Editing
Executive governance
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Constant fees ==== For constant fees [[Validation Pool#Vote|<math>f'(t):=f_0'</math>]] we get[[Validation Pool#Vote|<math display="block">R(t)=R_0+\int_{0}^t m*f' (s)ds=R_0+mf_0't </math>]]<nowiki/>and so Equation 11 gives[[Validation Pool#Vote|<math display="block">P_0^1(t) =exp\Biggl( p_3m\int _0^t \frac{f_0'}{R_0+mf_0's}\Biggr)ds=exp\Biggl( p_3 \biggl(ln(R_0+mf_0's)-ln(R_0)\biggr)\Biggr) =\biggl(1+\frac{mf_0'}{R_0}t\biggr)^{p_3}.</math>]]If (as we are assuming) all members police all the time, then[[Validation Pool#Vote|<math display="block">P_0^{R_0}(t)=R_0 \biggl(1+\frac{mf_0'}{R_0}t\biggr)^{p_3}.</math>]]<nowiki/>gives the formula for the collection of all policing tokens [[Validation Pool#Vote|<math display="inline">P_0^{R_0}</math>]] generated from the original tokens [[Validation Pool#Vote|<math display="inline">R_0</math>]] from time [[Validation Pool#Vote|<math display="inline">t=0</math>]]. The policing tokens from a single token grow without bound, however the relative power that all original tokens [[Validation Pool#Vote|<math display="inline">R_0</math>]] maintain under automated policing is[[Validation Pool#Vote|<math display="block">\frac{P_0^{R_0}(t)}{R(t)}=\frac{R_0 \biggl(1+\frac{mf_0'}{R_0}t\biggr)^{p_3}}{R_0+mf_0t}=\biggl(1+\frac{mf_0'}{R_0}t\biggr)^{p_3-1}\rightarrow 0</math>]]<nowiki/>as <math>t\rightarrow \infty</math> anytime [[Validation Pool#Vote|<math>p_3<1</math>]]. This proves policing alone cannot maintain your relative power in the DAO, nor the power of the original cohort . The inflationary minting mechanism will dilute your power if you don’t continue to contribute to the DAO with further work. So the entire starting DAO members will eventually be usurped if they don’t add more original contributions beyond automated policing. We also can calculate the income stream [[Validation Pool#Vote|<math display="inline">f_0^{1,P}(t)</math>]] of 1 token with policing [[Validation Pool#Vote|<math display="inline">P_0^1(t)</math>]] and its present value under the assumption of constant fees:[[Validation Pool#Vote|<math display="block">f_0^{1,P}(t)=\int_0^t f'(s)\frac{P_0^1(s)}{R(s)}ds=\int_0^t f_0'\frac{\biggl(1+\frac{mf_0'}{R_0}s\biggr)^{p_3}}{R_0+mf_0's}ds=\frac{f_0'}{R_0}\int_0^t \biggl(1+\frac{mf_0'}{R_0}s\biggr)^{p_3-1}ds=\frac{1}{mp_3}\Biggl(\biggl(1+\frac{mf_0'}{R_0}t\biggr)^{p_3}-1\Biggr).</math>]]<nowiki/>and<math display="block">PVf_0^{1,P}=\int_0^\infty e^{-rt} \frac{d}{dt} f_0^{1,P} (t)dt=\frac{f_0'}{R_0}\int_0^\infty e^{-rt}\biggl(1+\frac{mf_0'}{R_0}t\biggr)^{p_3-1}dt</math>This last expression is finite, but not expressible using elementary functions. This is common for any expression that derives from a complicated continuous process—most elementary functions lack elementary antiderivatives. Technically it is an incomplete gamma function. When necessary, we can make tables of values for any relevant parameters we happen to be using in order to gain intuition for how it behaves.
Summary:
Please note that all contributions to DAO Governance Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
DAO Governance Wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information